skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Butler, Joel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This is the full high-level report of Snowmass 2021, the most recent of the U.S. High Energy Physics (HEP) Community Planning Exercises, sponsored by the Division of Particles and Fields (DPF) of the American Physical Society (APS), with strong consultation from the aligned APS Divisions of Nuclear Physics, Astrophysics, Gravitational Physics, and Physics of Beams. The goal of these community studies, the first of which was in 1982, has been to identify the most important scientific questions in HEP for the following decade, with an eye to the decade after that, and the facilities, infrastructure, and \R&D needed to pursue them. This report consists of an overall summary, chapters on each of the ten main working groups of the study, called "Frontiers", a chapter on the work of the Snowmass Early Career Organization, a chapter on the ongoing search for dark matter as an example of cross-Frontier and cross-disciplinary physics, and a short Conclusion. Many reports and white papers provided input to this document and they are also available on an associated website. 
    more » « less
  2. Abstract Many measurements at the LHC require efficient identification of heavy-flavour jets, i.e. jets originating from bottom (b) or charm (c) quarks. An overview of the algorithms used to identify c jets is described and a novel method to calibrate them is presented. This new method adjusts the entire distributions of the outputs obtained when the algorithms are applied to jets of different flavours. It is based on an iterative approach exploiting three distinct control regions that are enriched with either b jets, c jets, or light-flavour and gluon jets. Results are presented in the form of correction factors evaluated using proton-proton collision data with an integrated luminosity of 41.5 fb -1 at  √s = 13 TeV, collected by the CMS experiment in 2017. The closure of the method is tested by applying the measured correction factors on simulated data sets and checking the agreement between the adjusted simulation and collision data. Furthermore, a validation is performed by testing the method on pseudodata, which emulate various mismodelling conditions. The calibrated results enable the use of the full distributions of heavy-flavour identification algorithm outputs, e.g. as inputs to machine-learning models. Thus, they are expected to increase the sensitivity of future physics analyses. 
    more » « less